[ | E-mail | Share ]
Contact: Brian Murphy
brian.murphy@ualberta.ca
780-492-6041
University of Alberta
University of Alberta led research may have discovered how memories are encoded in our brains.
Scientists understand memory to exist as strengthened synaptic connections among neurons. However components of synaptic membranes are relatively short-lived and frequently re-cycled while memories can last a lifetime.
Based on this information, U of A physicist and lead researcher Jack Tuszynski, his graduate student Travis Craddock and University of Arizona professor Stuart Hameroff investigated the molecular mechanism of memory encoding in neurons.
The team looked into structures at the cytoskeletal level of brain structure. They found components that fit together and were capable of creating the information processing and storage capacity that the brain needs to form and retain memory.
The practical implications of understanding the mechanism of memory encoding are enormous.
"This could open up amazing new possibilities of dealing with memory loss problems, interfacing our brains with hybrid devices to augment and 'refresh' our memories," says Tuszynski. "More importantly, it could lead to new therapeutic and preventive ways of dealing with neurological diseases such as Alzheimer's and dementia, whose incidence is growing very rapidly these days."
###
Their paper, "Cytoskeletal Signaling: Is Memory Encoded in Microtuble Lattices by CaMKII Phosphorylation?" was published in the journal, PLoS Computational Biology.
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
[ | E-mail | Share ]
Contact: Brian Murphy
brian.murphy@ualberta.ca
780-492-6041
University of Alberta
University of Alberta led research may have discovered how memories are encoded in our brains.
Scientists understand memory to exist as strengthened synaptic connections among neurons. However components of synaptic membranes are relatively short-lived and frequently re-cycled while memories can last a lifetime.
Based on this information, U of A physicist and lead researcher Jack Tuszynski, his graduate student Travis Craddock and University of Arizona professor Stuart Hameroff investigated the molecular mechanism of memory encoding in neurons.
The team looked into structures at the cytoskeletal level of brain structure. They found components that fit together and were capable of creating the information processing and storage capacity that the brain needs to form and retain memory.
The practical implications of understanding the mechanism of memory encoding are enormous.
"This could open up amazing new possibilities of dealing with memory loss problems, interfacing our brains with hybrid devices to augment and 'refresh' our memories," says Tuszynski. "More importantly, it could lead to new therapeutic and preventive ways of dealing with neurological diseases such as Alzheimer's and dementia, whose incidence is growing very rapidly these days."
###
Their paper, "Cytoskeletal Signaling: Is Memory Encoded in Microtuble Lattices by CaMKII Phosphorylation?" was published in the journal, PLoS Computational Biology.
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Source: http://www.eurekalert.org/pub_releases/2012-03/uoa-uoa031912.php
scare tactics dancing with the stars season 13 cast tay sachs tay sachs watch the walking dead giuliana and bill giuliana and bill
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.